Location: Home > Papers
  Papers

Growth, root compensation and ion distribution in Lyciumchinense under heterogeneous salinity stress

First Author: Xiaohui Feng, Ping An, Kai Guo, Xiaoguang Li, Xiaojing Liu,Xiumei Zhang
Contact the author:
Page Number: 24–32
Issue:
Subject:
Impact Factor:
Authors units:
PubYear: 2017
Volume: 226
Publication Name: Scientia Horticulturae
DOI: https://doi.org/10.1016/j.scienta.2017.08.011
ISSN:
Abstract:

A split-root experiment was conducted to study the growth of the woody plant Lyciumchinense under non-uniform salinity conditions and investigate the growth, root distribution and ion accumulation under uniform and heterogeneous NaCl stress. Four uniform salinity treatments with increasing concentrations of NaCl in the nutrient solution (0, 170, 340, and 510 mM) and 6 heterogeneous salinity treatments with different concentrations of NaCl (0/170, 0/340, 0/510, 170/340, 170/510, and 340/510 mM) were applied to two sides of split root pots. The results showed that L. chinense growth decreased with increasing uniform salinity when the salinity was higher than 170 mM. Under heterogeneous salinity stress, growth was not inhibited, except in the plants treated with 340/510 mMNaCl. The leaf net photosynthesis rate and transpiration rate were close to the mean root zone salinity, and stomatal conductance was mainly influenced by higher salinity. Fine roots proliferated in the lower salinity zone, which resulted in a stable total root volume as long as the salinity of one-half of the pot was within a suitable range. The root compensation effect was stronger when the salinity difference of the root zones was larger. Under heterogeneous salinity, the leaf Na+and Cl contents were maintained at a moderate level, and the leaf soluble sugar content was also within a normal range. These results suggest that the increased fine roots in the lower salinity zone and the moderate leaf Na+ and Cl contents alleviated salt stress. Thus, partial lower salinity zones can be created in heavily saline soil for the cultivation of woody plants.

 

Download: Download Address
   

Close

Printer